A little bit infinite?
Adding data to finitely labelled structures

Thomas Schwentick
Bordeaux
February 2008
Contents

Introduction
- Motivation from XML
- Motivation from Verification
- Data Model
- Automata
- Logic
- Other Models
- Conclusion

A little bit infinite? Thomas Schwentick

Folie 1
Contents

Introduction

- Motivation from XML
 - Motivation from Verification
- Data Model
- Automata
- Logic
- Other Models
- Conclusion
Composers from Southwest

<table>
<thead>
<tr>
<th>COMPOSERS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Birth</td>
<td>Death</td>
</tr>
<tr>
<td>Ravel</td>
<td>Ciboure</td>
<td>Paris</td>
</tr>
<tr>
<td>Tournemire</td>
<td>Bordeaux</td>
<td>Arcachon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIECES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Comp</td>
<td>Year</td>
<td>Instr</td>
</tr>
<tr>
<td>Boléro</td>
<td>Ravel</td>
<td>1928</td>
<td>Orch.</td>
</tr>
<tr>
<td>Douze Préludes</td>
<td>Tournemire</td>
<td>1932</td>
<td>Piano</td>
</tr>
<tr>
<td>La Valse</td>
<td>Ravel</td>
<td>1920</td>
<td>Orch.</td>
</tr>
</tbody>
</table>

SELECT B.Name, B.Comp
FROM Composers A, Pieces B
WHERE A.Name = B.Comp AND A.Birth = “Bordeaux”

- **Relational data**: flat structure & data
- Queries rely on **structure** and equality of data items:
 \[
 Q(x_1, x_2) \equiv
 \exists x_3, \ldots, x_5, y_1 \ldots, y_3
 \text{Pieces}(x_1, x_2, x_3, x_4, x_5) \land
 \text{Composers}(y_1, y_2, y_3) \land
 y_1 = x_2 \land y_3 = “Bordeaux”
 \]

- Integrity Constraints rely on **structure** and equality of data items:
 \[
 \forall x_1, \ldots, x_5, y_1, \ldots, y_5
 (x_1 = y_1 \land x_2 = y_2) \rightarrow
 (x_3 = y_3 \land x_4 = y_5 \land x_5 = y_5)
 \]
Example Tree

- **Composer**: Maurice Ravel
 - **Name**: Maurice Ravel
 - **When**: 1875
 - **Where**: Ciboure
 - **Composer**: Charles Tournemire
 - **Name**: Charles Tournemire
 - **When**: 1870
 - **Where**: Bordeaux

- **Piece**: Boléro
 - **PTitle**: Boléro
 - **PYear**: 1928
 - **Instruments**: Orchestra
 - **Movements**: 1

- **Piece**: La Valse
 - **PTitle**: La Valse
 - **PYear**: 1920
 - **Instruments**: Orchestra
 - **Movements**: 1

- **Piece**: Douze préludes poèmes
 - **PTitle**: Douze préludes poèmes
 - **PYear**: 1932
 - **Instruments**: Piano
 - **Movements**: 12
XML

Example

- **XML**: hierarchical structure & data
- **Data model**: an XML document can be viewed as an unranked tree in which
 - inner nodes correspond to elements
 - leaves correspond to data
 (attributes, text content)
- For many investigations,
 - the set of tags is restricted
 - data values can be ignored

→ **Abstraction**: labeled trees over a finite alphabet

- Works well for foundational studies on many aspects of
 - Validation
 - Navigation
 - Transformation

→ **Foundational research on XML has largely ignored data but concentrated on finitely labeled trees**
There is a need for data-aware foundational XML research:

- **Schemas:**
 - Schemas for XML describe the allowed structure of documents and can specify constraints on the data
 - Structure constraints can be captured by regular tree languages (automata & logics available)
 - Data constraints include uniqueness, keys, foreign keys

- **XPath:**
 - The core of XPath allows to specify navigational queries (automata & logics available)
 - But: it also allows comparisons between data

- **Other data-aware processing tasks:**
 - Querying: XQuery
 - Transformations: XSLT
 - Data Exchange [Arenas, Libkin 05]
An example scenario: **XML Query optimization**

- Algorithmic problem:
 - Given XPath expressions q_1, q_2 and a schema S
 - Decide whether, for each valid document d (wrt S):
 $$ q_1(d) \subseteq q_2(d) $$

- The XPath queries might combine navigation with conditions on data values:
 - q_1: select all composers who wrote a piece in the year they died
 - q_2: select all composers whose name is unique

- The schema S might consist of
 - structural constraints \rightarrow regular tree language L
 - and data integrity constraints
 (e.g.: each composer name occurs at most once)

- Most of XPath navigation can be modelled by two-variable logic

- **How to deal with data?**
Introduction

Motivation from XML

Motivation from Verification

Data Model

Automata

Logic

Other Models

Conclusion
A Toy Example from Verification

A printer and two processes

- Example properties that could be enforced:
 - **“Local property”**: processes never request a new print job before the last one has terminated, i.e.: for each i the subrun is of the form $(r_i s_i t_i)^*$,
 - **“Global property”**: a print job must be finished before the next one is started, i.e.: between a s_i and the subsequent t_i there is no s_j or t_j, $j \neq i$

Memory Allocation

- **“Local property”**: A memory location should only be accessed after it is allocated and before it is freed

- k processes give rise to 3^k states (\rightarrow “state explosion”)

- What if the number of processes is unknown?

- What if the number of processes changes during the computation?
The Automata Approach to Model Checking

- **Model checking:**
 - System: M
 - Property: φ
 - Does $M \models \varphi$?

- **The automata approach:**
 - Model a "real life" system as a transition system with finite state space
 - Abstract away data values, process numbers, ...
 - Model executions of the system as infinite strings or trees
 - Specify properties in a logic (e.g., LTL/CTL) that allows translation into automata
 - Use decidability of non-emptiness for automata to obtain decidability of model checking

- **But sometimes the finite state space approach does not really work**

- **Sources of infinity in software systems:**
 - **Data manipulation:** integers, lists, trees, more general pointer structures
 - **Control structures:** procedures, process creation
 - **Asynchronous communication:** unbounded FIFO queues
 - **Parameters:** number of processes, duration of delays
 - **Real-time:** discrete or dense domains

- **There is a huge need for Model Checking of infinite-state systems**
Current Approaches to Infinite-State Model Checking

- Infinite-State Model Checking has been an active and successful research area for many years

- **Typical approach (in a nutshell):**
 - Describe system states by some finite objects (strings, tuples of parameters)
 - Describe possible transitions from state to state
 - Device algorithms for checking reachability and/or repeated reachability

- **Examples:**
 - Timed automata [Alur, Dill 90]
 - Mutual exclusion protocols [Abdulla et al. 07]
 - Regular model checking [Bouajjani et al. 00]

- **Achievements:**
 - Model checking of linear time properties is in many cases possible

- **Still missing:**
 - Inter-state reasoning about data from infinite domains (e.g., for each \(i\), each \(r_i\) is followed by some \(s_i\), for an unlimited number of processes)
 - A generic framework for branching-time properties
A unifying approach

- There are obvious similarities between the XML and the infinite-state model checking scenario:
 - Traditional modeling uses finitely labeled structures:
 - strings, trees, Kripke structures
 - There is a need to add data from infinite domains to the positions/nodes of such structures
 - It should be possible to reason about inter-node relationships between data items

- A possible unifying approach:
 - Enhance finitely labeled structures by data
 - Various possibilities:
 - One (or more) relations per node
 - A vector of data values per node
 - One data item per node
 - ...and many more

- Parameters to choose:
 1. Underlying finitely labeled structures
 2. Amount and structure of data per node
 3. Operations and predicates on data
 4. Expressiveness of specification language

- Limitations:
 - To avoid undecidability of reasoning, parameters (1) - (4) have to be chosen very carefully

- Related work:
 - [Autebert et al. 80]
 - [Otto 85]: Regular and context-free languages over infinite alphabets (Symbols have structure)
 - [Henzinger 90]: Kripke structures with one data value per word
 - [Kaminski, Francez 90]: Strings over an infinite alphabet
 - More related work will be mentioned later
Data Strings and Data Trees

- In this talk:
 - We fix the structure and data parameters:
 1. Finite or infinite strings or trees as underlying finitely labeled structure
 2. One data item per node/position
 3. Only equality tests between data items
 - We try to find (4) expressive and decidable reasoning/specification mechanisms

Example: data string

<table>
<thead>
<tr>
<th>r</th>
<th>r</th>
<th>s</th>
<th>r</th>
<th>r</th>
<th>t</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>s</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Definition [Bouyer et al. 03]

- Data string: Finite sequence over $\Sigma \times D$, where
 - Σ finite (here: $\{r, s, t\}$)
 - D infinite (here: \mathbb{N})
Regular String Languages

- Data strings extend strings
- **Regular string languages** are a very powerful concept:
 1. **Expressiveness**: They capture the desired languages for many kinds of applications
 2. **Decidability**: Automated semantic analysis possible through automata
 3. **Efficiency**: Model checking in linear time.
 4. **Closure properties**: It is hard to find a natural operation under which they are not (effectively) closed
 5. **Robustness**: Tons of characterizations

→ Regular string languages offer an ideal framework to deal with string languages:
 - Declarative specifications...
 - ...can be translated into automata...
 - ...which can be efficiently
 * evaluated,
 * manipulated and
 * analyzed semantically

- **Furthermore**: There exist canonical generalizations of regular languages for a variety of data types:
 - Infinite strings, (infinite) trees, pictures,...

→ **Obvious question**:
 - Is there a corresponding canonical concept of “regular data languages”?

A little bit infinite? Thomas Schwentick tu.
Bad news: There does not seem to be a canonical notion of regular data languages

Good news: We can mimic the regular languages framework:
- Declarative specifications...
- ..can be translated into automata...
- ...which can be **effectively**
 * evaluated,
 * manipulated
 * analyzed semantically

This talk is about the search for a good framework to deal with (string or tree) data languages:
- Automata for data languages
- Logic-based specification languages
- Their (potential) use for XML and Model Checking
- Other approaches
Example properties of data strings

Example

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>3</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A **class** with **class string** \(rstrst\)

Examples

- **(L1)** No two \(a\)-positions do have the same data value
 - (unary key constraint)
- **(L2)** There are two \(a\)-positions with the same data value
- **(L3)** For each \(a\)-position there is a \(b\)-position with the same data value
 - (unary inclusion constraint)
- **(L4)** A print job of a user has to be printed before the next one can be requested
 - ("local safety")
- **(L5)** Each print request of a user is eventually followed by a print
 - ("local liveness")
- \(\rightarrow\) **(L1) - (L5)** are "local properties" of the class strings
- **(L6)** Between two successive print jobs of the same user some other user's job has to be printed
 - ("global safety")
- **(L7)** After each printed job a job of some other user is eventually printed
 - ("global liveness")

A little bit infinite? Thomas Schwentick
Contents

Introduction
Data Model

Automata

- Register Automata
 - Pebble Automata
 - Class Memory Automata

Logic

Other Models

Conclusion
Register Automata (1/3)

● A natural idea:
 Equip finite automata with registers that can store data values
 ➞ Register Automata

● (“Finite Memory Automata” in [Kaminski, Francez 90], but w/o labels)

Example

● Example automaton for (L6): Between two successive print jobs of the same user some other user’s job has to be printed

● Stated differently:
 No two successive s-positions carry the same data value

● Solution: store the data value of the previous s-position in register 1 and check that it does not occur at the next s-position

```
r r s r r t r s t s r t s t s t
2 5 5 3 8 5 5 2 2 8 4 8 3 3 4 4 5 5
```

R₁
R₂
Theorem 1 [Kaminski, Francez 90]

(a) Non-emptiness for register automata is decidable

(b) Testing \(L(A_1) \subseteq L(A_2) \) is decidable as long as \(A_2 \) has \(\leq 2 \) registers

Proof idea

(a) Crux: if there is a string in \(L(A) \), then there is one with \(\leq |Q| + 1 \) different data values

- Register automata can test global regular properties
 - That’s simple: just ignore the data values

Theorem 2 [Neven et al. 01]

- No register automaton can test (L4): “A print job of a user has to be printed before the next one can be requested”

Proof idea

- Assume some 3-register automaton \(A \) tests (L4)
- Consider the following input:

\[
\begin{array}{ccccccc}
 r & r & r & r & r & r \\
 1 & 2 & 3 & 4 & 1 \\
\end{array}
\]

- \(A \) cannot detect that process 1 has a pending print job

\[\rightarrow \] Easy to generalize for arbitrary number of registers
Theorem 3 [Kaminski, Francez 90]

- Testing whether a register automaton accepts every data string is undecidable

Summary of properties of register automata:

<table>
<thead>
<tr>
<th></th>
<th>RegisterA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressiveness</td>
<td>(L2),(L6),(L7)</td>
</tr>
<tr>
<td>Decidability</td>
<td>✓</td>
</tr>
<tr>
<td>Non-emptiness</td>
<td>✓</td>
</tr>
<tr>
<td>Containment</td>
<td>✓</td>
</tr>
<tr>
<td>Efficiency</td>
<td>✓</td>
</tr>
<tr>
<td>Data complexity word problem</td>
<td>✓</td>
</tr>
<tr>
<td>Closure properties</td>
<td>✓</td>
</tr>
<tr>
<td>Union</td>
<td>✓</td>
</tr>
<tr>
<td>Intersection</td>
<td>✓</td>
</tr>
<tr>
<td>Complement</td>
<td>✓</td>
</tr>
<tr>
<td>Robustness</td>
<td>✓</td>
</tr>
</tbody>
</table>

Variants of the basic RA model:
- 1-way and 2-way
- Deterministic and non-deterministic
- Alternating [Neven et al. 01, Demri Lazić 06]
- Look-ahead automata [Zeitlin 06]
- “Unification based” [Tal 99]
Contents

Introduction
Data Model

Automata
 Register Automata

▷ Pebble Automata
 Class Memory Automata

Logic

Other Models

Conclusion
Pebble automata (1/3)

- A different approach: instead of registers use pebbles (pointers/heads)
- Restrict movement and placement of pebbles:
 - Pebbles are numbered $1, 2, \ldots, k$
 - Only pebble with highest number i can be moved or lifted
 - Only pebble with number $i + 1$ can be placed

Example

<table>
<thead>
<tr>
<th>r</th>
<th>r</th>
<th>s</th>
<th>r</th>
<th>r</th>
<th>t</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>s</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- Example automaton for (L6): **Between two successive print jobs of the same user some other user’s job has to be printed**
- Again stated differently: **no two successive** s-**positions carry the same data value**
- **Solution:** for each s-position check that the previous s-position has a different data value
Pebble automata are a fairly powerful model:
- E.g., they can express all example properties (L1) – (L7)
- They can even express all properties that can be described by first-order logic
- Unfortunately: first-order logic on data strings is undecidable (see below)

Even non-emptiness of pebble automata is undecidable.

On the other hand the model is quite robust:
- one-way and two-way, deterministic and non-deterministic pebble automata are equally expressive

<table>
<thead>
<tr>
<th>Feature</th>
<th>RegisterA</th>
<th>PebbleA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressiveness</td>
<td></td>
<td>(L1)-(L7)</td>
</tr>
<tr>
<td></td>
<td>(L2),(L6),(L7)</td>
<td></td>
</tr>
<tr>
<td>Decidability</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Non-emptiness</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Containment</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data complexity word pr.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Closure properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intersection</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Complement</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Robustness</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

A little bit infinite? Thomas Schwentick
Pebble Automata (3/3)

A little bit infinite? Thomas Schwentick
Contents

- Introduction
- Data Model
- Automata
 - Register Automata
 - Pebble Automata
- Class Memory Automata
- Logic
- Other Models
- Conclusion

A little bit infinite? Thomas Schwentick
Intermediate state of affairs:

Register Automata:
- Decidable Non-emptiness: 😊
- Not expressive enough: 😞

Pebble Automata:
- Very expressive: 😊
- Undecidable Non-emptiness: 😞

New approach:
- Combine a global automaton with one automaton per class
- More precisely:
 * Transitions depend on
 - the input symbol (from the finite set of labels)
 - the current state
 - the state assumed last time in the class of the input data value
 * The automaton accepts if
 - the last state is in an accepting set F_g
 - and for each class, the last state is in a set F_l

→ **Class Memory Automata**

[Bojańczyk et al. 06, Björklund, S 07]
Class Memory Automata (2/5)

Example

- Class memory automaton for the set of data strings
 - with global pattern \((r^*sr^*t)^*\),
 - with local pattern \((rst)^*\) (for each class),
 - where at most one (singular) process prints more than once

\[
\begin{array}{cccccccccccc}
 r & r & s & r & r & t & r & s & t & s & r & t \\
 2 & 5 & 5 & 3 & 8 & 5 & 5 & 2 & 2 & 8 & 4 & 5
\end{array}
\]

\[
\begin{array}{cccccccccccc}
 t & t' & s' & s' & t' & t' & s' & t' & s' & t' & s' \\
 \downarrow & \downarrow
\end{array}
\]

- States are of the form \(p/q\), where
 - \(p\) remembers whether the singular process already has appeared and whether \(s\) or \(t\) has been seen last: \(s, t, s', t'\)
 - \(q\) is just the last symbol, (dotted if from the singular process)

- At the end,
 - the last state should be of the form \(t\) or \(t'\)
 - each class should have a last state of the form \(t\) or \(t'\)
Class Memory Automata (3/5)

- Class memory automata can express all properties (L1) – (L7)
- Later on we will see a precise characterization of their expressive power in terms of logic

Theorem 4

(a) Non-emptiness for class memory automata is decidable

(b) \(\text{RegA} \not\subset \text{ClassMA} \)

- The **complexity of Non-Emptiness** for class memory automata is **open**
- But there is little doubt that it is **extremely bad**:
 - Equivalent to Petri Net Reachability
 - Not even known to be primitive recursive

Proof idea for (a) [Bojańczyk et al. 06a]

- In a nutshell:
 - “Simulate” a class memory automaton \(\mathcal{A} \) by a (non-data) **Multicounter Automaton**:
 - String automaton \(\mathcal{A}' \) with several counters
 - \(\mathcal{A}' \) has one counter \(C_q \) per state \(q \) of \(\mathcal{A} \)
 - \(C_q \) counts the number of classes in state \(q \)
 - Zero tests are only needed at the end of the computation:
 \[C_p = 0, \text{ for } p \not\in F_t \]
 - Non-emptiness for multi-counter automata is decidable

- And:

\[L(\mathcal{A}) \neq \emptyset \iff L(\mathcal{A}') \neq \emptyset \]
Class Memory Automata (4/5)

Proof sketch for (b) [Björklund, S 07]

- **Strictness:** RAs cannot express (L1)
- **Isn’t** \(\mathsf{RegA} \subseteq \mathsf{ClassMA} \) **obvious?**
- **Not entirely,** consider (L6): **No two successive prints by the same process**
 - The register automaton for (L6) only needs one state plus a sink state
 - How shall a ClassMA seeing \(d \) know what happened since \(s \) occurred last time?

- **Idea:** \(\mathcal{A} \) “colors” positions by \(++, +, −, −−, −+ \) such that:
 - If an \(s \)-position has \(+ \) the next \(s \)-position has \(− \) (and \(− \rightarrow + \))
 - If an \(s \)-position has \(+ \) the next \(s \)-position in the same class has \(+ \)

Proof sketch for (b) (cont.)

- **Of course:** **if such a coloring exists,** (L6) **holds:** the next \(s \)-position is never the next \(s \)-position in the same class

 \[
 \begin{array}{cccccccc}
 & & & & S & & & \\
 & & & & 2 & & & \\
 s & & & & 3 & & & \\
 & & & & 2 & & & \\
 s & & & & 5 & & & \\
 & & & & 3 & & & \\
 s & & & & 2 & & & \\
 & & & & 5 & & & \\
 s & & & & 2 & & & \\
 s & & & & 3 & & & \\
 \end{array}
 \]

- **If (L6) holds such a coloring can be constructed** by applying the following rules:
 1. Assign \(+ \) to the very last \(s \)
 2. If no other rule applies: assign \(+ \) to the rightmost \(s \) without upper color
 3. Whenever \(\bar{x} \) is assigned to an \(s \)-position assign \(\bar{x} \) to its left \(s \)-neighbour and \(x \) to the left \(s \)-neighbour in its class
 4. Whenever \(\bar{x} \) is assigned to an \(s \)-position assign \(\bar{x} \) to its right \(s \)-neighbour

- **General proof of (b):** similar coloring trick
Class Memory Automata (5/5)

<table>
<thead>
<tr>
<th></th>
<th>RegisterA</th>
<th>PebbleA</th>
<th>ClassMA</th>
<th>DClassMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(L2),(L6),(L7)</td>
<td>(L1)–(L7)</td>
<td>(L1)–(L7)</td>
<td>(L1)–(L5),(L7)</td>
</tr>
<tr>
<td>Decidability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-emptiness</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Containment</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data complexity word pr.</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Closure properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Complement</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Robustness</td>
<td></td>
<td></td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>

A little bit infinite? Thomas Schwentick
Inclusion structure of Automata Models

A little bit infinite? Thomas Schwentick
Contents

Introduction
Data Model
Automata

Logic

- Two-Variable Logics
 - Temporal Logics
- Other Models
- Conclusion
Logics for Data Strings/Trees

- **Automata** offer an algorithmic framework
- **Logics** offer a framework for declarative specifications
- **We will consider:**
 - Restrictions of classical first-order logic
 - Extensions of temporal logics

<table>
<thead>
<tr>
<th>Logical language...</th>
<th>... for strings</th>
<th>... for trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(x))</td>
<td>Letter at position (x) is (a \in \Sigma)</td>
<td>(a(x)) Label of node (x) is (a \in \Sigma)</td>
</tr>
<tr>
<td>(+1)</td>
<td>successor relation on positions</td>
<td>(E \rightarrow) horizontal neighbor ("next sibling")</td>
</tr>
<tr>
<td>(<)</td>
<td>order relation on positions</td>
<td>(E \rightarrow) transitive closure of (E \rightarrow)</td>
</tr>
<tr>
<td>(E \downarrow)</td>
<td>parent-child</td>
<td>(E \downarrow) transitive closure of (E \downarrow)</td>
</tr>
<tr>
<td>(\sim)</td>
<td>(x \sim y) if positions (x) and (y) have the same (D)-value</td>
<td>(\sim) if nodes (x) and (y) have the same (D)-value</td>
</tr>
<tr>
<td>(\mp1)</td>
<td>next position in the same class</td>
<td></td>
</tr>
</tbody>
</table>

- Of course: \(\sim \) is an equivalence relation
- No other operations on data values, in particular no arithmetic!
A first attempt

- We know:
 - First-order logic is undecidable in general
 - First-order logic is decidable on strings
- What about First-order logic on data strings?

Theorem 5 [Bojańczyk et al. 06a]

- Satisfiability of First-Order formulas on data strings is undecidable, even for formulas with 3 variables

Proof idea

- Reduction from PCP:
 - Given: \((u_1, v_1), \ldots, (u_k, v_k)\), pairs of strings
 - Question: is there a sequence \(i_1, \ldots, i_n\) such that \(u_{i_1} \cdots u_{i_n} = v_{i_1} \cdots v_{i_n}\)?

A bit more detail

- Encode solution candidates as data strings over \(\{a, b, \#, 1, \ldots, k\}\) of the form \(u \neq v\)
- Each occurrence of a \(u_i\) is prefixed by \(i\):
 - E.g., if \(u_1 = aba\) and \(u_2 = bb\) then \(121\) induces \(1aba2bb1aba\)
- Each data value occurs exactly twice, once in \(u\) and once in \(v\)
 - Corresponding positions should have the same data value (and same number/symbol)
- Crucial: check that the sequence of data values is the same on both sides for number positions and letter positions
 - Important subformula:
 \[
 x \sim y \rightarrow \exists z \left(x + 1 = z \land \exists x \ y + 1 = x \land z \sim x \right)
 \] "if \(x\) and \(y\) are equivalent then their right neighbors are also equivalent"

A little bit infinite? Thomas Schwentick
Two Variables on Data Strings: A Useful Restriction?

- **A classical approach: Restriction to 2 variables**
- **Does this restriction give us anything useful?**
 1. We do not have free choice...
 2. lot of useful properties can be expressed with only two variables

Examples

(L1) No two a-positions do have the same data value
\[\forall x \forall y \; (x \sim y \land a(x) \land a(y)) \rightarrow x = y \]

(L2) There are two a-positions with the same data value
\[\exists x \exists y \; x \sim y \land a(x) \land a(y) \land x \neq y \]

(L3) For each a-position there is a b-position with the same data value
\[\forall x \exists y \; a(x) \rightarrow (b(y) \land x \sim y) \]

(L4) A print job of a user has to be printed before the next one can be requested
\[\forall x \forall y \; y = x \pm 1 \rightarrow [(r(x) \rightarrow s(s)) \land (s(x) \rightarrow t(y))] \]

(L5) Each print request of a user is eventually followed by a print
\[\forall x \exists y \; r(x) \rightarrow (s(y) \land x < y \land x \sim y) \]

(L6) Between two successive print jobs of the same user some other user’s job has to be printed
not expressible

(L7) After each printed job a job of some other user is eventually printed
\[\forall x \exists y \; r(x) \rightarrow (s(y) \land x < y \land x \not\sim y) \]
On the expressive power of FO^2 on data strings (1/2)

Example

- φ_a:
 - $\forall x \forall y (x \sim y \land a(x) \land a(y)) \rightarrow x = y$
 - all a's are in different classes

- Similarly: φ_b

- $\psi_{a,b}$:
 - $\psi_{a,b} = \forall x \exists y (a(x) \rightarrow (b(y) \land x \sim y))$
 - each class with an a also contains a b

- Similarly: $\psi_{b,a}$.

$\varphi = \varphi_a \land \varphi_b \land \psi_{a,b} \land \psi_{b,a}$ implies:
 - the numbers of a and b-labeled positions are equal

- In a similar fashion: number of a's, b's and c's are equal

\Rightarrow The string projection of an FO^2-definable data language need not be context-free
More example properties

- Let α and β denote unary quantifier-free formulas ("types")
- FO^2 can express
 - data-blind properties, i.e., properties not using \sim
 - Each class contains at most one occurrence of α:
 $$\theta = \forall x \forall y \left((\alpha(x) \land \alpha(y) \land x \sim y) \rightarrow x = y \right)$$
 - In each class, every α occurs before every β:
 $$\theta = \forall x \forall y \left((\alpha(x) \land \beta(y) \land x \sim y) \rightarrow x < y \right)$$
 - Each class with an α also has a β:
 $$\theta = \forall x \exists y \left(\alpha(x) \rightarrow (\beta(y) \land x \sim y) \right)$$
 - If a position is in a different class than its successor it has type α:
 $$\theta = \forall x \forall y (\neg (x \sim y) \land x + 1 = y) \rightarrow \alpha(x)$$

- That’s basically all!

Theorem 6 [Bojańczyk et al. 06a]

Satisfiability of $\text{FO}^2(\sim, <, +1, \pm 1)$ on data strings is decidable
Proof Sketch for Theorem 6 (1/2)

Scott and intermediate normal form

- We transform two-variable formulas into satisfiability equivalent formulas of **existential monadic second-order logic**
- "Scott normal form": \(\exists R_1, \ldots, R_k \, \forall x \, \forall y \, \chi \land \bigwedge_i \forall x \exists y \, \chi_i \)
- Intermediate normal form:
 \(\exists R_1 \cdots R_m \, \theta_1 \land \cdots \land \theta_n \)

- \(\theta_i \):
 1. \(\forall x \forall y \, (\delta(x, y) \geq 2 \land \alpha(x) \land \beta(y) \land \begin{cases} x \sim y \\ x \not\sim y \end{cases}) \rightarrow \begin{cases} x < y \\ x > y \end{cases} \)
 2. \(\forall x \exists y \, \alpha(x) \rightarrow (\beta(y) \land \begin{cases} x + 1 < y \\ x + 1 = y \\ x = y \end{cases} \land \begin{cases} x \sim y \\ x \not\sim y \end{cases}) \land \begin{cases} x = y + 1 \\ x > y + 1 \end{cases} \)
 3. \(\forall x \forall y \, \theta \) \hspace{1em} (\theta \text{ quantifier-free, DNF, no } \sim)

- Both steps are straightforward
Proof Sketch for Theorem 6 (2/2)

Data normal form & Class Memory Automata

- **Data normal form:**
 - Disjunction of formulas $\exists R_1 \cdots R_n \; \theta_1 \land \cdots \land \theta_n$
 - θ_i:
 1. data-blind
 2. Each class contains at most one α
 3. In each class, every α occurs before every β
 4. Each class with an α also has a β
 5. If x is in a different class than its successor has type α

- **Final Step:**
 - Each θ_i can be recognized by a *Class Memory Automaton*
 - Existential monadic quantification corresponds to nondeterminism in CMAs
 - CMAs are closed under union and intersection

 \Rightarrow Formulas in data normal form can be effectively translated into Class Memory Automata

- Decidability of $\text{FO}^2(\sim, <, +1, \pm 1)$ follows from decidability of Non-emptiness for Class Memory Automata

- **Corollary:** $\text{ClassMA} \equiv \text{EMSO}^2(\sim, <, +1, \pm 1)$
FO^2 on Data Strings: Complexity

- Complexitywise, Satisfiability of $\text{FO}^2(\sim, <, +1)$ is basically equivalent to Non-Emptiness of multicounter automata
 - \rightarrow Unknown complexity

- **Restrictions:**
 - $\text{FO}^2(\sim, <)$: complete for NEXPTIME [David 04]
 - $\text{FO}^2(\sim, +1)$: in 3NEXPTIME [Bojańczyk et al. 06b]

- **Extensions:**
 - $+2$, $+3$,...: same results
 - ω-strings: same results
 - Linear order on data values: undecidable
Two-Variable Logic on Data Trees

Theorem 7 [Bojańczyk et al. 06b]
For any vector addition tree automaton A, a formula $\varphi_A \in \text{FO}^2(\sim, <, +1)$ can be computed such that:
\[L(A) \neq \emptyset \iff \varphi_A \text{ has a model} \]

- Decidability of emptiness of vector addition tree automata is an open problem
- It is equivalent to decidability of Multiplicative Exponential Linear Logic
- We concentrate on $\text{FO}^2(\sim, +1)$

Theorem 8 [Bojańczyk et al. 06b]
Satisfiability of $\text{FO}^2(\sim, +1)$ on data trees is decidable

- The intermediate steps of the proof are similar as for data strings
- But additional techniques needed:
 - Model normalization by cut-and-paste arguments
 - Canonical “small” models that can be recognized by simpler tree automata

- **Complexity:**
 - Upper bound: 3-NEXPTIME
 - Lower bound: NEXPTIME
- On trees of bounded depth: FO^2 with all axes decidable [Björklund, Bojańczyk 07]
Consequences for XML Reasoning

- **We already know:**
 - Unary key and inclusion constraints can be expressed in \(\text{FO}^2(\sim, +1, <) \) two variables

- **Furthermore:**
 - Regular tree languages can be captured by \(\text{EMSO}^2(+1) \)
 - The core of XPath without data values corresponds exactly to \(\text{FO}^2(+1, <) \) [Marx, de Rijke 05]
 - A simple data-aware fragment of XPath (without transitive axes) can be expressed in \(\text{FO}^2(\sim, +1) \)

Query Containment for “simple data-aware XPath” relative to Schemas with integrity constraints is decidable

- More results on reasoning about XML integrity constraints:
 - [Arenas et al. 05]
A little bit infinite? Thomas Schwentick
Temporal Logics and the Freeze Quantifier

- **FO^2** is natural to consider from an XML point of view.

- From a **verification** point of view it is natural to add data handling capabilities to temporal logics.

→ Another natural idea:
 - “Use registers in LTL formulas”
 [Demri, Lazic 06]

- More precisely, add the following two constructs to LTL (or another logic):
 - Unary “quantifiers” \downarrow_i
 (where i is a natural number)
 - Atomic formulas \uparrow_i

- **Informal semantics:**
 - \downarrow_i stores the current data value in register i
 - \uparrow_i is true if the current data value equals the value in register i

- **Syntax of LTL with Freeze:**

\[
\varphi ::= \top \mid a \mid \uparrow_i \mid \varphi \land \varphi \mid \neg \varphi \mid \\
X \varphi \mid F \varphi \mid G \varphi \mid \varphi U \varphi \mid \downarrow_i \varphi
\]

- **Examples:**
 - (L5) each print request by a process is followed by a print for that user:
 $G(r \rightarrow \downarrow_1 X F(\uparrow_1 \land s))$
 - (L6) Between two successive print jobs of the same user, some other user’s job has to be processed:
 $G\neg(r \land \\
 \downarrow_1 X(\neg(s \land \neg \uparrow_1) U (s \land \uparrow_1)))$
LTL with Freeze

Theorem 9 [Demri, Lazić 06]

(a) Finite Satisfiability for LTL with Freeze is
 (1) undecidable in general
 (2) decidable but not primitive recursive if only 1 register is used

(b) Infinite Satisfiability for LTL with Freeze is
 ● undecidable even with only 1 register

Proof idea

● More than 1 register:
 – Non-Emptiness of Minsky Counter Automata is reducible to
 Satisfiability of LTL with Freeze
 ➞ Undecidability

● 1 register:
 – Satisfiability for LTL with Freeze with 1 register is basically
 computationally equivalent to **Non-Emptiness of Incrementing Counter Automata**:
 * Automata with counters and zero tests,
 * but: counters can always be incremented non-deterministically
 – Non-Emptiness of Incrementing Counter Automata is
 * decidable but not primitive recursive for finite strings
 * undecidable for finite strings
LTL with Freeze vs. \mathbf{FO}^2

- LTL with Freeze cannot express:
 - (L3) for each a-position there is a b-position with the same data value
- More generally: it cannot talk about the past
- \mathbf{FO}^2 cannot express:
 - (L6) Between two successive print jobs of the same user some other user’s job has to be printed
- More generally: it cannot talk about “betweenness” with respect to data values

\Rightarrow LTL with Freeze and \mathbf{FO}^2 are incomparable
LTL with Freeze: Extensions and Restrictions

- **LTL with Freeze and past modalities:** [Demri, Lazić 06]
 - \(X^{-1}, G^{-1}, F^{-1}, U^{-1}\)
 - Can express all \(FO^2\) properties
 - But: Satisfiability undecidable
 - A certain fragment exactly corresponds to \(FO^2\)

- **Safety LTL:** [Lazić 07]
 - **Safety properties:** failure is determined by a finite bad prefix
 - Safety LTL allows \(F\) and \(U\) only under an odd number of nested negations
 - Satisfiability for Safety LTL with one register is complete for \(EXPSPACE\)

- **Constraint LTL\(\diamond\):** [Demri et al. 07]
 - Future and past modalities
 - More than 1 data value per position: variables
 - Two kinds of data value comparisons:
 - \(x = X^ky\): variable \(x\) at current position equals variable \(y\) at current position \(+k\)
 - \(x = \diamond y\): the current \(x\) equals some future \(y\)
 - Finitary and Infinitary Satisfiability are decidable
Automata and Logics

<table>
<thead>
<tr>
<th></th>
<th>RegisterA</th>
<th>PebbleA</th>
<th>ClassMA</th>
<th>FO^2</th>
<th>LTL & Freeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(L2), (L6), (L7)</td>
<td>(L1)–(L7)</td>
<td>(L1)–(L7)</td>
<td>(L1)–(L5), (L7)</td>
<td>(L1), (L2), (L4)–(L7)</td>
</tr>
<tr>
<td>Decidability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-emptiness</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Containment</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data complexity word pr.</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Closure properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Complement</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Robustness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Some Related Work on Data Strings

[Boyer et al. 03] Extension of register automata based on monoids
 - Still can only remember a bounded number of data values
 ➞ Cannot express (L1), (L3)–(L5)

[Francez, Kaminski 03] Myhill-Nerode Theorem for data strings

[Kaminski, Tan 04] Regular expressions
 - ...corresponding to unification-based register automata

[Zeitlin 06] Look-ahead register automata
 - ... can guess data values
 ➞ Closed under reversal
 - Equivalent characterizations by
 – Regular expressions (stronger than the above)
 – Grammars

[Cheng, Kaminski 98] Register pushdown automata
 - Decidable Non-emptiness

LTL on top of first-order logic
 - [Spielmann 00]: Verification of relational transducers
 - [Abdulla et al. 04]: ...even on top of MSO
 - [Deutsch et al. 04]: Verification of web services
 - In all cases: restricted comparison of data values of different states
Some Related Work on Data Trees

[Kaminski, Tan 06] Register automata for trees

[Jurdziński, Lazić 07] Alternation-free modal μ-calculus
 - Basically identical results as for LTL with Freeze
 - In particular:
 - Computationally equivalent to Incrementing Tree Counter Automata
 - Safety fragment
Introduction
Data Model
Automata
Logic
Other Models

▶ Conclusion
Conclusion

- Data strings and data trees constitute a very active research area with (potential) applications in fields like Semistructured Data and Automated Verification

- **Data strings:**
 - Attracted most attention so far
 - No obvious analogon of regular languages (so far)
 - But “logic \rightarrow automaton \rightarrow analysis” possible to some extent
 - Applicability in Verification has yet to be explored:
 * Data string approach is orthogonal to Reachability-based approaches
 * Its ability to talk about data values is limited (e.g., no arithmetic)
 \rightarrow Is it really useful?
 * ...for other areas? (program analysis, communicating systems,...)

- **Data trees:**
 - Clearly a good model for XML data
 - Can offer a basis for data-aware static analysis
 - Needs more work

- **In both cases we need:**
 - Models with better complexity
 - Models with richer data access
Open Problems

Technical Questions:

● Precise complexity of Satisfiability of $\text{FO}^2(\sim, +1)$ on data strings
● Precise complexity of Satisfiability of $\text{FO}^2(\sim, +1)$ on data trees
● Is Satisfiability of $\text{FO}^2(\sim, <, +1)$ on data trees decidable?
● Upper complexity bounds for Satisfiability of $\text{FO}^2(\sim, <, +1, \pm 1)$ on data strings
● Find a decidable automaton model corresponding to ClassMAs

To be explored:

● Is there a generic class of regular data (string/tree) languages?
● Find models with better complexities
● Study the trade-off between more expressive data access and complexity/decidability
● Find larger decidable fragments of data-aware XPath
Main References (for this Talk)

[Björklund, Schwentick 07] Björklund, Schwentick: On notions of regularity on words with data, FCT 2007

[Bojańczyk et al. 06a] Bojańczyk, Muscholl, Schwentick, Segoufin, David: Two-variable logic on words with data, LICS 2006

[Bojańczyk et al. 06b] Bojańczyk, David, Muscholl, Schwentick, Segoufin: Two-variable logic on data trees and XML reasoning, PODS 2006

[Demri, Lazić 06] Demri, Lazić: LTL wit freeze quantifier and register automata, LICS 2006

[Demri et al. 07] Demri, D’Souza, Gascon: A decidable temporal logic of repeating values

[Lazić 06] Lazić: Safely freezing LTL, FSTTCS 2006

[Neven et al. 01] Neven, Schwentick, Vianu: Finite state machines for strings over infinite alphabets, ACM ToCL 04 (and MFCS 01 with different title)

Surveys:
- Segoufin: Automata and logics for words and trees over an infinite alphabet, CSL 2006
- Segoufin: Static analysis of XML processing with data values, SIGMOD Record 2007
[Abdulla et al. 04] Abdulla, Jonsson, Nilsson, d’Orso, Mayank: Regular model checking for LTL(MSO), CAV 2004

[Abdulla et al. 07] Abdulla, Delzanno, Rezine: Parameterized Verification of infinite-state processes with global conditions, CAV 2007

[Bouajjani et al. 00] Bouajjani, Jonsson, Nilsson, Touili: Regular model checking, CAV 00

[Boyer et al. 03] Bouyer, Petit, Thérien: An algebraic approach to data languages and timed languages, Inf. Comp. 2003

[David 04] David: Mote et données infinis, 2004
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Deutsch et al. 04]</td>
<td>Deutsch, Sui, Vianu: Specification and verification of data-driven web apps, PODS 04, JCSS 06</td>
</tr>
<tr>
<td>[Francez, Kaminski 03]</td>
<td>Francez, Kaminski: An algebraic characterization of deterministic regular langs over infinite alphabets, TCS 2003</td>
</tr>
<tr>
<td>[Henzinger 90]</td>
<td>Henzinger: Half-order modal logic: how to prove real-time properties, PODS 90</td>
</tr>
<tr>
<td>[Marx, de Rijke 05]</td>
<td>Marx, de Rijke: Semantic Characterizations of Navigational XPath, SIGMOD record 05</td>
</tr>
<tr>
<td>[Zeitlin 06]</td>
<td>Zeitlin: Look-ahead finite-memory automata, 2006</td>
</tr>
</tbody>
</table>